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Many important real-world networks manifest small-world properties such as scale-free degree distributions,
small diameters, and clustering. The most common model of growth for these networks is preferential attach-
ment, where nodes acquire new links with probability proportional to the number of links they already have.
We show that preferential attachment is a special case of the process of molecular evolution. We present a
single-parameter model of network growth that unifies varieties of preferential attachment with the quasispe-
cies equation (which models molecular evolution), and also with the Erdés-Rényi random graph model. We
suggest some properties of evolutionary models that might be applied to the study of networks. We also derive
the form of the degree distribution resulting from our algorithm, and we show through simulations that the
process also models aspects of network growth. The unification allows mathematical machinery developed for

evolutionary dynamics to be applied in the study of network dynamics, and vice versa.
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I. INTRODUCTION

The study of networks has become a very active area of
research since the discovery of small-world networks [1,2].
Small-world networks are characterized by scale-free degree
distributions, small diameters, and high clustering coeffi-
cients. Many real networks, such as neuronal networks [2],
power grids [3], the world wide web [4], and human lan-
guage [5], have been shown to be small world. The small-
world character has important consequences. For example,
such networks are found to be resistant to random attacks,
but susceptible to targeted attacks, because of the power-law
nature of the degree distribution.

The process most commonly invoked for the generation
of such networks is called preferential attachment [6,7].
Briefly, new links attach preferentially to nodes with more
existing links. Simon analyzed this stochastic process, and
derived the resulting distribution [8]. This simple process has
been shown to generate networks with many of the charac-
teristics of small-world networks, and has largely replaced
the Erdds-Rényi random graph model [9] in modeling and
simulation work.

Another major area of research in recent years has been
the consolidation of evolutionary dynamics [10], and its ap-
plication to alternate areas of research, such as language [11].
This work rests on the foundation of quasispecies theory
[12,13], which forms the basis of much subsequent math-
ematical modeling in theoretical biology.

In this paper we bring together network generation mod-
els and evolutionary dynamics models (and particularly qua-
sispecies theory) by showing that they have a common
underlying probabilistic model. This unified model relates
both processes through a single parameter, called a transfer

*Electronic address: swarup@uiuc.edu

1539-3755/2007/75(6)/066114(10)

066114-1

PACS number(s): 89.75.Hc, 89.75.Da, 87.23.Kg

matrix. The unification allows mathematical machinery de-
veloped for evolutionary dynamics to be applied in the study
of network dynamics, and vice versa. The rest of this paper is
organized as follows. First we describe the preferential at-
tachment algorithm and the quasispecies model of evolution-
ary dynamics. Then we show that we can describe both of
these with a single probabilistic model. This is followed by a
brief analysis, and some simulations, which show that
power-law degree distributions can be generated by the
model, and that the process can also be used to model some
aspects of network growth, such as densification power laws
and shrinking diameters.

II. PREFERENTIAL ATTACHMENT

The preferential attachment algorithm specifies a process
of network growth in which the addition of new (in-)links to
nodes is random, but biased according to the number of
(in-)links the node already has. We identify each node by a
unique type i, and let x; indicate the proportion of the total
number of links in the graph that is already assigned to node
i. Then Eq. (1) gives the probability P(i) of adding a new
link to node i [6]:

P(i) = ax/, (1)

where « is a normalizing term, and 7y is a constant. As y
approaches O the preference bias disappears; y>1 causes
exponentially greater bias from the existing in-degree of the
node.

III. EVOLUTIONARY DYNAMICS AND QUASISPECIES

Evolutionary dynamics describes a population of fypes
(species, for example) undergoing change through replica-
tion, mutation, and selection. Suppose there are N possible
types, and let s;, denote the number of individuals of type i
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in the population at time 7. Each type has a fitness f;, which
determines its probability of reproduction. At each time step,
we select, with probability proportional to fitness, one indi-
vidual for reproduction. Reproduction is noisy, however, and
there is a probability g;; that an individual of type j will
generate an individual of type i. The expected value of the
change in the number of individuals of type i at time ¢ is
given by,

Z Ii8iij
J

Asy= . )
2 13
J

This is known as the quasispecies equation [13]. The fitness
f; is a constant for each i. Fitness can also be frequency
dependent, i.e., it can depend on which other types are
present in the population. In this case the above equation is
known as the replicator-mutator equation [10,14].

IV. A GENERALIZED POLYA URN MODEL
THAT DESCRIBES BOTH PROCESSES

Urn models have been used to describe both preferential
attachment [15] and evolutionary processes [16]. Here we
describe an urn process derived from the quasispecies equa-
tion that also gives a model of network generation. In addi-
tion, this model of network generation will be seen to unify
the Erdés-Rényi random graph model [9] with the preferen-
tial attachment model.

Our urn process is as follows.

(a) We have a set of n urns, which are all initially empty
except for one, which has one ball in it.

(b) We add balls one by one, and a ball goes into urn i
with probability proportional to fym;, where f; is the “fitness”
of urn i, and m; is the number of balls already in urn i.

(c) If the ball is put into urn j, then a ball is taken out of
urn j, and moved to urn k with probability gy;.

The matrix Q=[g;;], which we call the transfer matrix, is
the same as the mutation matrix in the quasispecies equation.

This process describes the preferential attachment model
if we set the fitness f; to be proportional to m;/_l, where vy is
a constant [as in Eq. (1)]. Now we get a network generation
algorithm in much the same way as Chung er al. did [15],
where each ball corresponds to a half edge, and each urn
corresponds to a node. Placing a ball in an urn corresponds
to linking to a node, and moving a ball from one urn to
another corresponds to rewiring. We call this algorithm
“noisy preferential attachment” (NPA). If the transfer matrix
is set to be the identity matrix, noisy preferential attachment
reduces to pure preferential attachment.

In the NPA algorithm, just as in the preferential attach-
ment algorithm, the probability of linking to a node depends
only on the number of in-links to that node. The “from” node
for a new edge is chosen uniformly randomly. In keeping
with standard practice, the graphs in the next section show
only the in-degree distribution. However, since the from
nodes are chosen uniformly randomly, the total degree dis-
tribution has the same form. Consider the case where the
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transfer matrix is almost diagonal, i.e., g;; is close to 1, and
the same Vi, and all the q;; are small and equal, Vi#j. Let
g;;=p and

1_
Py Yit] 3)

qii:n—l_

Then, the probability of the new ball being placed in bin i is
P(i)=am!p + (1 —am])q, (4)

where « is a normalizing constant. That is, the ball could be
placed in bin i with probability arm} and then replaced in bin
i with probability p, or it could be placed in some other bin
with probability (1—am}), and then transferred to bin i with
probability g. Rearranging, we get

P(i)=am!(p-q)+q. (5)

In this case, NPA reduces to preferential attachment with
initial attractiveness [17], where the initial attractiveness (g,
here) is the same for each node. We can get different values
of initial attractiveness by setting the transfer matrix to be
nonuniform. We can get the Erd6s-Rényi model by setting
the transfer matrix to be entirely uniform, i.e., q;j
=1/n,Vi,j. Thus the Erdds-Rényi model and the preferen-
tial attachment model are seen as two extremes of the same
process, which differ in the transfer matrix Q.

This process also obviously describes the evolutionary
process when y=1. In this case, we can assume that at each
step we first select a ball from among all the balls in all the
urns with probability proportional to the fitness of the ball
(assuming that the fitness of a ball is the same as the fitness
of the urn in which it is). The probability that we will choose
a ball from urn i is proportional to f;m;. We then replace this
ball and add another ball to the same urn. This is the repli-
cation step. This is followed by a mutation step as before,
where we choose a ball from the urn and either replace it in
the urn with with probability p or move it to any one of the
remaining urns. If we assume that all urns (i.e. all types or
species) have the same intrinsic fitness, then this process
reduces to the preferential attachment process.

Having developed the unified NPA model, we can now
point toward several concepts in quasispecies theory that are
missing from the study of networks, that NPA makes it pos-
sible to investigate.

(a) Quasispecies theory assumes a genome, a bit string for
example. This allows the use of a distance measure on the
space of types.

(b) Mutations are often assumed to be point mutations,
i.e., they can flip one bit. This means that a mutation cannot
result in just any type being introduced into the population,
only a neighbor of the type that gets mutated.

(c) This leads to the notion of a quasispecies, which is a
cloud of mutants that are close to the most-fit type in genome
space.

(d) Quasispecies theory also assumes a fitness landscape.
This may in fact be flat, leading to neutral evolution [18].
Another (toy) fitness landscape is the sharply peaked land-
scape, which has only one peak and therefore does not suffer
from problems of local optima. In general, though, fitness
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landscapes have many peaks, and the ruggedness of the land-
scape (and how to evaluate it) is an important concept in
evolutionary theory. The notion of (node) fitness is largely
missing from network theory (with a couple of exceptions
[19,20]), though the study of networks might benefit greatly
from it.

(e) The event of a new type entering the population and
“taking over” is known as fixation. This means that the entire
population eventually consists of this new type. Typically,
we speak of gene fixation, i.e., the probability that a single
new gene gets incorporated into all genomes present in the
population. Fixation can occur due to drift (neutral evolu-
tion) as well as due to selection.

V. ANALYSIS AND SIMULATIONS

We next derive the degree distribution of the network.
Since there is no “link death” in the NPA algorithm and the
number of nodes is finite, the limiting behavior in our model
is not the same as that of the preferential attachment model
(which allows introduction of new nodes). This means that
we cannot reuse Simon’s result [8] directly to derive the
degree distribution of the network that results from NPA.!

A. Derivation of the degree distribution

Suppose there are N urns and n balls at time 7. Let x;,
denote the fraction of urns with i balls at time . We choose
a ball uniformly at random and “replicate” it, i.e., we add a
new ball (and replace the chosen ball) into the same urn.
Uniformly random choice corresponds to a model where all
the urns have equal intrinsic fitness. We follow this up by
drawing another ball from this urn and moving it to a uni-
formly randomly chosen urn (from the N—1 other urns) with
probability g=(1-p)/(N—1), where p is the probability of
putting it back in the same urn. Let P;(i) be the probability
that the ball to be replicated is chosen from an urn with i
balls. Let P,(i) be the probability that the new ball is placed
in an urn with i balls. The net probability that the new ball
ends up in an urn with 7 balls is

P(i)=P,(i) and P,(i) or P,(i)and P,(i).  (6)
The probability of selecting a ball from an urn with i balls is

in i
Pl(l) = . s

no +1

where ng is the number of balls in the urns initially. P,(i)
depends on the outcome of the first step.

13

) p+(Nx;,—1)qg when step 1 is ““successful,”
Py(i) =

Nx; ,q when step 1 is a “failure.”

Putting these together, we get

!Simon (and Yule [27] before him) applied their stochastic model
to the estimation of numbers of species within genera, but the no-
tion of quasispecies was unknown at the time, and it addresses a
much wider range of issues than species frequency.
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Now we calculate the expected value of x; .. x;, will in-
crease if the ball goes into an urn with i—1 balls. Similarly, it
will decrease if the ball ends up in an urn with i balls. Oth-
erwise it will remain unchanged. Remembering that x; , is the
fraction of urns with i balls at time 7, we write

in,t+1

r

Nx;,;+ 1 with probability

Nxoi (i—1)
— = (p— ) + Nxi_y 4,
l’l0+l

=9 . . Nxg
Nx;,— 1 with probability :

(p—q)+Nx;q,
l’l0+t ’

(VXi e otherwise.

From this, the expected value of x;,,; works out to be

_< ip-q) ) (w )
X =\1- —q )Xt +q)Xi—14-

ny+ t ny+ t
(7
We can show the approximate solution for x;, to be,
1-p r'TG) _
Xy=— T+ (1 -¢g), (8)
N
ITkr+1)
k=1

where r=(p—¢)/(1—¢g). This approximation is valid when 7
<N. See Appendix A for details. For any particular i, the
shape of this curve is given by #(1—¢)". An example curve is
shown in Fig. 1. This matches our intuition. Initially, x; ,=0
for i>1. As t increases, x;, increases through mutations.
However, since N is finite and we keep adding balls, even-
tually the number of bins with 7 balls must go to zero for any
particular i. Thus x; , must eventually start decreasing, which
is what we see in Fig. 1. The middle term can be simplified
further as

0.5t(0.99) ——
1(0.99)! —— |

0 200 400 600 800 1000
t

FIG. 1. Example x;, curves.
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FIG. 2. Form of the degree distribution.
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Therefore, in terms of i, equation (8) can be written as
(for fixed 1),

@)

x,-=C—1, 9)
F<i+1+—>
r

where C is a constant. This is the form of the degree distri-
bution. This is a power law, because as i — % Eq. (9) tends to
i~0+17) [see the discussion of Eq. (1.4) in [8, p. 426]]. This is
also demonstrated in the sample plots in Fig. 2.

These results are confirmed through simulation. We did an
experiment where the number of possible nodes was set to
100 000, and 10000 links were added. The experiment was
repeated for values of p ranging from 0.01 to 0.99, in steps
of 0.01. Figure 3 shows a plot of coherence ¢, which is
defined as

¢=2x;. (10)

Coherence is a measure of the nonuniformity of the degree
distribution. It is 1 when a single node has all the links.
When all nodes have one link each, coherence has its lowest
value, 1/N. We see that as p increases (i.e., mutation rate
decreases), coherence also increases. This is borne out by the
degree distribution plots (Figs. 4—6). The degree distribution
is steeper for lower values of p.

0.8
07
06 | °
05
04 o
[_J
03t Lod

02 r %

Coherence (mean fitness)
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p (= 1 - mutation probability)

FIG. 3. N=100 000, number of edges=10 000.
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FIG. 4. p=0.8, N=100 000, number of edges=10 000.

B. Stability
We can rewrite Eq. (2) as

1
As;= (fisiqii+ Efjsj%j)~ (11)

I J#i
J

The first term in the parentheses represents the change in s;
due to selection. Some of the copies of type i are lost due to
mutation. The fraction that are retained are given by the
product f;q;;. If this product is greater than 1, the proportion
of type i will increase due to selection, otherwise it will
decrease. The second term represents the contribution to type
i due to mutation from all the other types in the population.
Thus, if s; decreases toward zero due to a selective disadvan-
tage, it will be maintained in the population at “noise” level
due to mutations.

This leads to the notion of an error threshold. Suppose
that the fitness landscape has only one peak. This is known
as the sharply peaked landscape. Suppose further that muta-
tions alter only one position on the genome at a time. Then it
can be shown that, if the mutation rate is small enough, the
population will be closely clustered about the fittest type.
The fittest type keeps getting regenerated due to selection,
and mutations generate a cloud of individuals with genomes
very close to the genome of the fittest type. This cloud is
known as a quasispecies [21].

If, on the other hand, the mutation rate is above a certain
threshold (essentially 1/f;, where i is the fittest type) then all
types will persist in the population in equal proportions. This
threshold is known as the error threshold.
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FIG. 5. p=0.6, N=100 000, number of edges=10 000.
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FIG. 6. p=0.4, N=100 000, number of edges=10 000.

VI. FITNESS LANDSCAPES AND NEUTRAL EVOLUTION

We have seen above that noisy preferential attachment is
equivalent to molecular evolution where all intrinsic fitnesses
are equal. If node fitnesses are allowed to be different, we get
standard quasispecies behavior. If the mutation rate is low
enough, the fittest node dominates the network and acquires
nearly all the links. If the mutation rate is high enough to be
over the error threshold, no single node dominates.

Figures 7 and 8 show simulations where nodes are as-
signed intrinsic fitness values uniformly randomly in the
range (0,1), for different values of p. We see that when p is
high (0.9), i.e., mutation rate is low, the degree distribution
stretches out along the bottom, and one or a few nodes ac-
quire nearly all the links. When p=0.4, though, we do not get
this behavior, because the mutation rate is over the error
threshold.

Since we generally do not see a single node dominating in
real-world networks, we are led to one of two conclusions:
either mutation rates in real-world networks are rather high,
or the intrinsic fitnesses of the nodes are all equal. The
former seems somewhat untenable. The latter suggests that
most networks undergo neutral evolution [18].

Fitness landscapes can also be dynamic. Golder and Hu-
berman give examples of short-term dynamics in collabora-
tive tagging systems (in particular Del.icio.us) [22]. Figures
9 and 10, which are taken from their paper, show two in-
stances of the rate at which two different web sites acquired
bookmarks. The first one shows a peak right after it appears,
before the rate of bookmarking drops to a baseline level. The
second instance shows a web site existing for a while before
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FIG. 7. p=0.4, N=100 000, number of edges=10 000, node fit-
nesses are uniformly randomly distributed between O and 1.
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FIG. 8. p=0.9, N=100 000, number of edges=10 000, node fit-
nesses are uniformly randomly distributed between 0 and 1.

it suddenly shows a peak in the rate of bookmarking. Both
are examples of dynamic, i.e., changing, fitness. Wilke et al.
have shown that, in the case of molecular evolution, a rap-
idly changing fitness landscape is equivalent to the time-
averaged fitness landscape [23]. Thus, while the short-term
dynamics show peaks in link (or bookmark) acquisition, the
long-term dynamics could still be neutral or nearly neutral.

VII. DYNAMICAL PROPERTIES OF REAL-WORLD
NETWORKS

Leskovec et al. point out that, though models like prefer-
ential attachment are good at generating networks that match
static “snapshots” of real-world networks, they do not appro-
priately model how real-world networks change over time
[24]. They point out two main properties that are observed
for several real-world networks over time: densification
power laws and shrinking diameters. The term densification
power law refers to the fact that the number of edges grows
superlinearly with respect to the number of nodes in the

180
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60 \
40 \

20 e

Bookmarks Received

0
0 5 10 15 20 25

Day

FIG. 9. This is Fig. 6a from [22]. It shows the number of book-
marks received against time (day number). This particular site ac-
quires a lot of bookmarks almost immediately after it appears, but
thereafter receives few bookmarks. Reproduced with permission
from S. A. Golder and B. A. Huberman, “Usage patterns of collabo-
rative tagging systems,” J. Info. Sci., Copyright (© CILIP, 200), by
permission of Sage Publications, Ltd.
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FIG. 10. This is Fig. 6b from [22]. It shows the number of
bookmarks received against time (day number). This particular site
suddenly acquires a lot of bookmarks in a short period of time,
although it has existed for a long time. Reproduced with permission
from S. A. Golder and B. A. Huberman, “Usage patterns of collabo-
rative tagging systems,” J. Info. Sci., Copyright (© CILIP, 200), by
permission of Sage Publications, Ltd.

network. In particular, it grows as a power law. This means
that these networks are getting more densely connected over
time. The second surprising property of the dynamics of
growing real-world networks is that the diameter (or 90th
percentile distance, which is called the effective diameter)
decreases over time. In most existing models of scale-free
network generation, it has been shown that the diameter in-
creases very slowly over time [25]. Leskovec er al. stress the
importance of modeling these dynamical aspects of network
growth, and they present an alternate algorithm that displays
both the above properties.

Noisy preferential attachment can also show these prop-
erties if we slowly decrease the mutation rate over time.
Figures 11 and 12 show the effective diameter of the network
and the rate of change of the number of nodes with respect to
the number of edges for a simulation in which the mutation
rate was changed from 0.3 to 0.01 over the course of the
simulation run.

—_
o

90th Percentile Distance

- N W~ OO N o ©
— & T

0 20 40 60 80 100 120 140 160 180 200
Number of edges (x100)
FIG. 11. Effective diameter of the network when the mutation

rate decreases over time from 0.3 to 0.01. It increases quickly at
first and then decreases slowly over time.
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FIG. 12. Number of nodes grows as a power law with respect to
the number of edges (or time, since one edge is added at each time
step). The slope of the line is approximately 0.86.

VIII. CONCLUSIONS

We have shown that, when modeled appropriately, the
preferential attachment model of network generation can be
seen as a special case of the process of molecular evolution
because they share a common underlying probabilistic
model. We have presented a more general model of network
generation, based on this underlying probabilistic model.
Further, this model of network generation, which we call
noisy preferential attachment, unifies the Erd6s-Rényi ran-
dom graph model with the preferential attachment model.

The preferential attachment algorithm assumes that the
fitness of a node depends only on the number of links it has.
This is not true of most real networks. On the worldwide
web, for instance, the likelihood of linking to an existing
web page depends also on the content of that web page.
Some websites also experience sudden spurts of popularity,
after which they may cease to acquire new links. Thus the
probability of acquiring new links depends on more than the
existing degree. This kind of behavior can be modeled by the
noisy preferential attachment algorithm by including intrin-
sic fitness values for nodes.

The noisy preferential attachment algorithm can also be
used to model some dynamical aspects of network growth
such as densification power laws and shrinking diameters by
gradually decreasing mutation rate over time. If true, this
brings up the intriguing question of why mutation rate would
decrease over time in real-world networks. On the worldwide
web, for example, this may have to do with better-quality
information being available through the emergence of im-
proved search engines, etc. However, the fact that many dif-
ferent kinds of network exhibit densification and shrinking
diameters suggests that there may be some deeper explana-
tion to be found.

From a design point of view, intentional modulation of the
mutation rate can provide a useful means of trading off be-
tween exploration and exploitation of network structure. We
have been exploring this in the context of convergence in a
population of artificial language learners [26].

The larger contribution of this work, however, is to bring
together the fields of study of networks and evolutionary
dynamics, and we believe that many further connections can
be made.
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APPENDIX A

Here we solve the difference equation

. =(1_i(p—q)_ )x. +<(i—1)(p—q)
i,r+1 I’l0+t q it Vl0+t

+ Q>xi—1,r

(A1)

Xo, 18 a special case,

N Nxy,—1 with probability Nx,,q,
X, =
0l otherwise.

NxO,l

Expanding and simplifying as above, we get

X001 = (1 = @),
The solution to this difference equation is simply

X0, = (1= ¢q)'x00, (A2)
where xp0=(N-1)/N is the initial value of the number of
empty urns. Note that here, and henceforth, we are assuming
that initially all the urns are empty except for one, which has
one ball in it. Therefore x; y=1 and x; =0 Vi> 1. This also
means that ny=1. These conditions together specify the en-
tire initial state of the system.

Equation (A1) is difficult to solve directly, so we shall
take the approach of finding the solution to x, , and x,, and
then simply guessing the solution to x;,.

Substituting i=1 in Eq. (7) gives us

-q)
X141 = 1- T —q X1t gXp,-
0

Substituting the solution for x, from Eq. (A2) gives us

(r-q)
X111 = 1- —p -
0

4>X1,r+61(1 -q@)'x00. (A3)

The complete solution for x; , is (see Appendix B),

x1’,=(1—q)’<A(t+1)+§), (A4)

where A=qxgo/(1+p—2q) and B=2(p—q)/(1+p-2¢q)NI'(1
—r) are constants. Let us now use this result to derive the
solution for x,,. Substituting i=2 in Eq. (A1), we get

i =<1_2(p—q)_q>x +<p—q
21+l n0+t 2t l’l0+t

+ q)xl’,.

Substituting the solution for x; , from Eq. (A4) and replacing
ny by 1 for convenience gives us
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X141 = (1 - 2 =) —Q)xz,t"' (1- Q)t<A(l‘+ 1)+ g)

1+1
pP—dq
X| —— . A5
<1+t+q) (A5)

The solution to this (after some work) turns out to be (see
Appendix B),

r B D
Xy, = (1 —q)t(A(t+ l)m + ; + z)

q(1-¢)'
1+p-2¢q

2rt+t+2r

B
22rt 1) +Z(t+ 2)). (A6)

(A(t+ 1)

In the above expression, compared to the first term, the re-
maining terms are negligible. To see this, consider that B/
can be at most B (as r—0), and at least B/t (as r—1). B
itself is less than 1/N. Therefore the contribution of the sec-
ond term is upper bounded by 1/N. A similar observation
will hold for D/f2. This is far less than the contribution due
to the first term, since A (which is also close to 1/N) is
multiplied by (#+1). The remaining terms are approximately
of the form #*/N? (and higher i will contain higher powers).
We can ignore these as long as << N. Thus, we can write the
solution for x,, approximately as

Ar g N-1
= t+1)(1-gq)'= —F— t+1)(1-gq)
wm D =) = S e (1 —g)
1_
I 4 (r+1)(1 =)

N (r+1)Q2r+1)

We can continue on with x3 :

3(p-q) 2(p-q)
X341 = I-———¢q X3+ 1 +1 +q X,

1+1¢

If we follow through with this as for x,,, we will see the 2
from the constant in the second term [2p/(t+1)] appear as a
factor in the first term of the solution for x3,. In the general
expression for the solution, this appears as I'(i). Therefore,
we can guess the approximate expression for x;, to be

1-p r'T3)
Nu= Ty T

I Gker+1)
k=1

(t+1)(1-g) ", (A7)

which is the same as Eq. (8).

APPENDIX B

Equation (A3) is

(r-9

Xy g1 = (1 - P 4)x1,r+ g(1—q)'xgp-

I’l0+

This equation is of the form y(z+1)=p(r)y(¢)+r(¢). The gen-
eral form of the solution is

066114-7
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(B1)

¥(1) = um(E ) c),

Eu(n) *

where u(?) is the solution of the homogeneous part of the
above equation, i.e., u(r+1)=p(t)u(r), and E is the time-shift
operator, i.e., Eu(f)=u(t+1). Now, the homogeneous part of
Eq. (A3) is

u(t + 1):(1—q—p_qt>u(t)

no +
:<(1—q)t+(1—q)no—(p—q)>u(t)
no+1
=(1-9) t+n°_% u(r)

1+ ng

The solution to this difference equation is

I'(t+ng—r)

u(t)=C(1-q) TGtn)
0

(B2)
where r=(p—q)/(1—-¢q), C is a constant, and I'(-) is the
Gamma function, which is a “generalization” of the factorial
to the complex plane. It is defined recursively as I'(n+1)
=nl"(n). The derivation of Eq. (B2) is given in Appendix C.
From Egs. (A3), (B1), and (B2), we get

I'(t+ng—r)
F(t + l’lo)

gxoo(1 —q)T(t+ 1+ ny) )
X E 2 D
( C(l—q)’+lr(t+1+n0—r)+ !

C(1-q) (

- (l""l’lo—l)r

Xi= C(l _Q)t

C(q;c(ioq) E (t + n0)5+ D1>

(" is read as “ to the r falling”)

_q(1=q)"xg (t+ 0= D(1-¢q)
T o(t+ng-DE r+1 (t+ng—1)*

(where D = CD, is another constant)

g =q) %o Lt +ng=r)T(t+ny+1) D -gq)
T l+p-2q T(t+ny) T(t+ng—r) (t+ny—1)"
_ q(1 = @)%t +ny)  D(1-gq)

1+p-2gq (t+ng—1)F

Let us evaluate the constant by applying the initial conditions
1=0, x90=(N-1)/N, x; y=1/N, and no=1. We get

1 N-1)IN
—=—q( ) +DF(1—}’)
N 1+p-2¢q
N-1
_AN=D L pra- .
1+p-2¢q

Therefore,

PHYSICAL REVIEW E 75, 066114 (2007)

B 2(p-9q)
C(1+p-29)NT(1-1)"

(B3)

This gives us the complete solution for x; , as

xp == q)’(A(t+ 1)+ IE)

where  A=gxgo/(1+p-2¢q) and B=D=2(p—q)/(l+p
—2g)NI'(1-r) are constants. This is the same as Eq. (A4).
1. Solution to Eq. (A5)

Equation (A5) is

xz,r+1=(1—
pP—4q

Xl —+ .

<1+t q)

Again, this equation is of the form of Eq. (B1). The solution
to the homogeneous part in this case is

F<t+1——2(p_q)>
l-¢g

I'iz+1)

2(p-¢q)
1+1¢

- Q>x2,z+ (1- q)f(A(H 1+ ?)

u()=C(1-q)' (B4)

This is solved in exactly the same way as Eq. (B2) (see
Appendix C). Now, from equations (B1), (A5), and (B4), we
get,

i B\(p=a
o :C(l—q)’ > (1=9) (A(t+l)+t’>(t+1 +q>+Dl
! t& C(l_q)tﬂ

(t+ 1%

_c-g 1
& [ Cl-g)

2 2
D4 )Es B S D g 5 D )

i+ 1) t
+D1].

Solving the summations (see Appendix C), we get
Cl-¢') 1 [Ap-g)+1)*
X =
> 2| (1-q) 2r+1

t
4 (t(t+ D>FL (4 1)2E2
2r+1 2r+1)2r+2)

5 (t+2)t2—’} b
ERSATI R

Simplifying,

(A(p—q)E (t+ DE+Aq X (1

2
) +B(p—-q)—
It

066114-8



UNIFYING EVOLUTIONARY AND NETWORK DYNAMICS

_a )t<Ar(t+1) Aqg(t+1)2rt+1t+2r)
X = =g 25+ 1 +(1—q)(2r+1)(27’+2)

B Bg(t+2) ) D(1-¢q)

— 4+
£ (I-g)(1+nt 2

r B D
=(1- ’<A1+1—+—+—)
=g Al D+ et

1-q) 2rt+t+2r B
M(A(z+ 1)r—r+—(z+2)>.
1+p-2¢q 22r+1)

This is the same as Eq. (B5).
APPENDIX C

1. Derivation of Eq. (B2)

Equation (B2) is the solution to the following difference
equation:

t+n0—;
l-¢g

t+n0

u(t+1)=(1-¢q) u(t).

Note that all the factors in this equation are positive. Taking
logarithms, we get

logu(r+1) :log[(l —q)(HZ—O_rH +log u(z),

t ny

A log u(1) =log[<1 —q>(”t’+’—°,;.’)},
log u(t) = E [log(1 — q) + log(r + ng—r) —log(t + ng)] + D.

Remembering that Sa=ta and 2 log(t+a)=log I'(t+a), we
get

log u(t) =tlog(l —gq) +log I'(t + ny— r) = log I'(t + ny) + D.
Therefore

I'(t+ny—r)

u(t)=C(1-q) T+m)
0

This is the same as Eq. (B2).

2. Derivation of Eq. (B5)

Equation (B5) is the solution to the following difference
equation:

_C(l—q)’[ 1
P L e(l-g)

r
X D (t+ D+ DZ+B(p-q)

2r 2r
S (t+1) 50 (t+1) >+D]].

Hir+1) t

(A(p—q) > (t+ D)X+ Aq

We shall solve each of the summations individually. At sev-
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eral points, we will use the summation by parts formula,

2 [Ey(Az(0]=y(0z() - 2 [z()Ay(0].  (C1)
The first summation term can be obtained directly:
el
2(t+1)&=(HL+C1. (C2)
2r+1

The second summation term can be obtained using the sum-
mation by parts formula. Let Ey(r)=t+1. Then y(r)=¢, and
Ay(t)=1. Let Az(t)=(t+1)%. Then z(t)=(r+1)Z=L/(2r+1).
We get

5+ D+ 12 (t+ 1)L
2+ D+ = 2r+1 2 2r+1
. (t+ 1)(r+ 1)L (t+ 1)2x2
2 D = e e )
+C,. (C3)

Before proceeding, we pause to calculate 2(1/¢5). Note that

l_ 1 l_t+1—r l_ -r
£+ ) G+ DE £+ D
t+1 l_l
—-r tf_tf'

Taking the summation, we get
I 1 1
S Ly (mal)
ro—r i
Using the summation by parts formula, we get

si-tfe-2)

r\t t*
1 I -t
1-= —=—,
( r)ztZ rtt
1 t
—= . C4
Etf (I-nt (€4

We now proceed to the third summation term in the differ-
ence equation for x, ,,

(t+ 1% 2=
> .

r+1) - t

We shall again use the summation by parts formula. Let
Ey(f)=r2=1. Therefore y(f)=(t—1)2=L, and Ay(r)=(2r-1)
X(t=1)2=2. Let Az(r)=1/¢. Therefore z(t)=t/(1-r)f [from
Eq. (C4)]. We get

5 2=l f(r-1)2=! s 2r—11(t-1)2=2
Y r
(t-1DZ=L 2r—1 « &t
- (1-r)it B l—r2 [
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2r—1 -1 A (e ) il SN2k R 4
(1+ d )2 = ( ) 2 =

1-r i~ 1-r A i s

Therefore,

(D>
A+ 1)

>

The fourth summation term in the difference equation for x, ,
is similar to the third one,
(t+ 1)
=y +1).

(t+ 1)
> o

Let Ey(r)=(t+1). Then y(r)=t and Ay(t)zl. Let Az(7)
=3[(t+1)¥/t5(t+1)]. Then z(t)=t*/rt" [from Eq. (CS5)].
Therefore, using the summation by parts rule, we get

(t + 1)2_r 2r 2r

R e (o)

(C5)

Now,

PHYSICAL REVIEW E 75, 066114 (2007)

Etz—’ 2(t+1—2r)t2’__ (t=2n¥ 1E
?: t* - rt- r o~
t=2rt¥
- 1+r?

Substituting back in Eq. (C6), we get

E(z+1)2-’_£ l(r—2rﬁ)_£<t t—Zr)
t* Tt o\ l+r ) 1+r)°

rt- rt-

Therefore, we have

5 (t+ 1) (t+2)¥

£ (I +nre

(C7)

Combining Egs. (C2), (C3), (C5), and (C7), we get the solu-
tion for x,, i.e., Eq. (BS).
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